Dissemin is shutting down on January 1st, 2025

Published in

Universidade Federal Rural do Semi-árido, Revista Caatinga, 4(34), p. 937-944, 2021

DOI: 10.1590/1983-21252021v34n421rc

Links

Tools

Export citation

Search in Google Scholar

BIOMASS AND CHEMICAL RESPONSES OF Desmanthus Spp. ACCESSIONS SUBMITTED TO WATER DEPRIVATION1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Due to the predictions of climate change, there is a need to identify forage plants that can keep their productivity and nutritive value under hydric stress. The objective of this study was to evaluate the biomass and chemical responses of three Desmanthus spp. accessions under two water deprivation regimens (7 and 21-day). The experimental design used was randomized blocks in a 3 × 2 factorial arrangement (access and water deprivation) with four replications. There were reductions in the biomasses of leaf and stem fractions of 64% and 51%, respectively. The 43F accession showed greater leaf (1.86 g.plant-1) and stem (1.97 g.plant-1) biomasses under a total water restriction of 21 days, compared to the 89F and AusT accessions. In accessions 43F and 89F, there were carbohydrate accumulations in the leaves of 28% and 51%, respectively, under the 21-day water restriction, while AusT decreased 38% within a 7-day interval. Water deprivation affected the chemical characteristics of the accessions. Free proline was similar among accessions and accumulated 463% more in the leaves of plants submitted to 21-day water deprivation (90.22 mg.kg-1) compared to those subjected to water deprivation for 7 days (16.03 mg.kg-1). Proline and total soluble carbohydrate accumulation in 43F and 89F were insufficient to regulate crude protein, C content, and C:N ratios. These results demonstrate the variability in drought tolerance among accessions. Accessions 43F and 89F were more susceptible to 21-day water deprivation, while AusT showed greater drought tolerance.