Published in

Oxford University Press (OUP), Briefings in Bioinformatics, 6(22), 2021

DOI: 10.1093/bib/bbab329

Links

Tools

Export citation

Search in Google Scholar

An approach to gene-based testing accounting for dependence of tests among nearby genes

Journal article published in 2021 by Ronald Yurko, Kathryn Roeder ORCID, Bernie Devlin, Max G’Sell
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In genome-wide association studies (GWAS), it has become commonplace to test millions of single-nucleotide polymorphisms (SNPs) for phenotypic association. Gene-based testing can improve power to detect weak signal by reducing multiple testing and pooling signal strength. While such tests account for linkage disequilibrium (LD) structure of SNP alleles within each gene, current approaches do not capture LD of SNPs falling in different nearby genes, which can induce correlation of gene-based test statistics. We introduce an algorithm to account for this correlation. When a gene’s test statistic is independent of others, it is assessed separately; when test statistics for nearby genes are strongly correlated, their SNPs are agglomerated and tested as a locus. To provide insight into SNPs and genes driving association within loci, we develop an interactive visualization tool to explore localized signal. We demonstrate our approach in the context of weakly powered GWAS for autism spectrum disorder, which is contrasted to more highly powered GWAS for schizophrenia and educational attainment. To increase power for these analyses, especially those for autism, we use adaptive $P$-value thresholding, guided by high-dimensional metadata modeled with gradient boosted trees, highlighting when and how it can be most useful. Notably our workflow is based on summary statistics.