Published in

MDPI, Animals, 10(11), p. 2969, 2021

DOI: 10.3390/ani11102969

Links

Tools

Export citation

Search in Google Scholar

Metabolic Flexibility in Canine Mammary Tumors: Implications of the Carnitine System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible for the transport of fatty acids across mitochondrial membranes for β-oxidation are deregulated in tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and cells. In this study, we examined the protein expression of the three remaining enzymes of CS (Carnitine Acylcarnitine Translocase (CACT), Carnitine Palmitoyl Transferase 2 (CPT2), Carnitine O-acetyltransferase (CrAT), in canine mammary cells and tissues by Western blot and immunohistochemistry. Protein expression of the components of CS was found in normal mammary glands and a concomitant deregulation of expression in CMT tissues that inversely correlated with the degree of tumor differentiation. Moreover, the expression and a different deregulation of CS-related proteins was also observed in CF33, CMT-U27, CMT-U309, and P114 cell lines used as in vitro model. These results demonstrate for the first time the expression of CS components in CMT tissues and cancer cells; however, further studies are needed to elucidate their roles in dogs as well.