Published in

Revista Brasileira de Engenharia Agrícola e Ambiental, 4(25), p. 264-269, 2021

DOI: 10.1590/1807-1929/agriambi.v25n4p264-269

Links

Tools

Export citation

Search in Google Scholar

Sensor system for acquisition of vegetation indexes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

ABSTRACT Vegetation indexes are important indicators of the health and yield of agricultural crops. Among the sensors used to evaluate vegetation indexes, proximal sensors can be used for real-time decision-making. Thus, the objective of this study was to develop a proximal sensor system based on phototransistors to acquire and store the following vegetation indexes: normalized difference vegetation index, simple ratio, wide dynamic range vegetation index, soil-adjusted vegetation index, and optimized soil-adjusted vegetation index. The sensor system was developed using an analog circuit to acquire reflectance data from red and near-infrared bands. The sensor system was calibrated according to the results of a spectroradiometer, using Zoysia japonica grass as the target. An algorithm that calculates and stores vegetation indexes in a file was developed. The Pearson correlation between the vegetation indexes obtained with the sensor system and the spectroradiometer was evaluated. The vegetation indexes presented a Pearson correlation higher than 0.92 to the estimated values by the spectroradiometer. Under the evaluation conditions, the proposed sensor system could be used to determine all vegetation indexes evaluated.