Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Carbon Balance and Management, 1(16), 2021

DOI: 10.1186/s13021-021-00182-7

Links

Tools

Export citation

Search in Google Scholar

Validating the regional estimates of changes in soil organic carbon by using the data from paired-sites: the case study of Mediterranean arable lands

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundLegacy data are unique occasions for estimating soil organic carbon (SOC) concentration changes and spatial variability, but their use showed limitations due to the sampling schemes adopted and improvements may be needed in the analysis methodologies. When SOC changes is estimated with legacy data, the use of soil samples collected in different plots (i.e., non-paired data) may lead to biased results. In the present work, N = 302 georeferenced soil samples were selected from a regional (Sicily, south of Italy) soil database. An operational sampling approach was developed to spot SOC concentration changes from 1994 to 2017 in the same plots at the 0–30 cm soil depth and tested.ResultsThe measurements were conducted after computing the minimum number of samples needed to have a reliable estimate of SOC variation after 23 years. By applying an effect size based methodology, 30 out of 302 sites were resampled in 2017 to achieve a power of 80%, and an α = 0.05.A Wilcoxontestapplied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference in SOC concentration after 23 years (Z = − 0.556; 2-tailed asymptotic significance = 0.578). In particular, only 40% of resampled sites showed a higher SOC concentration than in 2017.ConclusionsThis finding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% increase when estimated as differences of 2 models built with non-paired data), when compared to 1994 observed data (Z = − 9.119; 2-tailed asymptotic significance < 0.001).This suggests that the use of legacy data to estimate SOC concentration dynamics requires soil resampling in the same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of the sites to resample in order to align two legacy datasets in the same area.