Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Translational Medicine, 600(13), p. eabi4994, 2021

DOI: 10.1126/scitranslmed.abi4994

Links

Tools

Export citation

Search in Google Scholar

Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (Treg) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with Treg cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of Treg cells and particularly follicular Treg cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on Treg cells induced a down-regulation of the transforming growth factor–β axis, altering the phenotype of Treg cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin–dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue.