Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Computational Biology, 10(17), p. e1009433, 2021

DOI: 10.1371/journal.pcbi.1009433

Links

Tools

Export citation

Search in Google Scholar

Improved prediction of smoking status via isoform-aware RNA-seq deep learning models

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Most predictive models based on gene expression data do not leverage information related to gene splicing, despite the fact that splicing is a fundamental feature of eukaryotic gene expression. Cigarette smoking is an important environmental risk factor for many diseases, and it has profound effects on gene expression. Using smoking status as a prediction target, we developed deep neural network predictive models using gene, exon, and isoform level quantifications from RNA sequencing data in 2,557 subjects in the COPDGene Study. We observed that models using exon and isoform quantifications clearly outperformed gene-level models when using data from 5 genes from a previously published prediction model. Whereas the test set performance of the previously published model was 0.82 in the original publication, our exon-based models including an exon-to-isoform mapping layer achieved a test set AUC (area under the receiver operating characteristic) of 0.88, which improved to an AUC of 0.94 using exon quantifications from a larger set of genes. Isoform variability is an important source of latent information in RNA-seq data that can be used to improve clinical prediction models.