Published in

Oxford University Press, Journal of Analytical Toxicology, 5(46), p. 504-511, 2021

DOI: 10.1093/jat/bkab056

Links

Tools

Export citation

Search in Google Scholar

LC-MS/MS Analysis of Δ9-THC, CBN and CBD in Hair: Investigation of Artefacts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In forensic toxicology, high-performance liquid chromatography tandem mass spectrometry (LC–MS-MS) is increasingly used for the fast and sensitive measurement of a wide range of drugs. For our routine casework, a LC atmospheric pressure chemical ionization MS-MS method for the quantification of Δ9-tetrahydrocannabinol (Δ9-THC), cannabinol (CBN) and cannabidiol (CBD) in hair was established and fully validated. Separation was achieved using a Kinetex® C18 column (100 mm × 2.1 mm, 100 Å, 1.7 μm, Phenomenex) at a flow rate of 0.5 mL/min. Measurements were performed on a QTRAP 5500 mass spectrometer (Sciex, Darmstadt, Germany). Unexpected signals were observed in authentic THC-positive hair samples. First, a signal with a slightly shifted retention time of THC whose origin could be assigned to the isomer Δ8-THC was detected. Second, additional peaks exhibiting the same fragments as CBN and Δ9-THC but eluting at different retention times were detected. Spiking experiments and enhanced product ion scans pointed to the origin of these additional signals as result of in-source decarboxylation of Δ9-tetrahydrocannabinolic acid A (Δ9-THCA-A) into Δ9-THC and further partial oxidation of Δ9-THC into CBN, respectively. Positive findings of Δ9-THCA-A in hair have been shown to derive from external contamination; therefore, the herein described artifacts may be used as indirect markers for external contamination.