Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 11(22), p. 5627, 2021

DOI: 10.3390/ijms22115627

Links

Tools

Export citation

Search in Google Scholar

TP53 Targeted Deep Sequencing of Cell-Free DNA in Esophageal Squamous Cell Carcinoma Using Low-Quality Serum: Concordance with Tumor Mutation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Circulating cell-free DNA (cfDNA) is emerging as a potential tumor biomarker. CfDNA-based biomarkers may be applicable in tumors without an available non-invasive screening method among at-risk populations. Esophageal squamous cell carcinoma (ESCC) and residents of the Asian cancer belt are examples of those malignancies and populations. Previous epidemiological studies using cfDNA have pointed to the need for high volumes of good quality plasma (i.e., >1 mL plasma with 0 or 1 cycles of freeze-thaw) rather than archival serum, which is often the main available source of cfDNA in retrospective studies. Here, we have investigated the concordance of TP53 mutations in tumor tissue and cfDNA extracted from archival serum left-over from 42 cases and 39 matched controls (age, gender, residence) in a high-risk area of Northern Iran (Golestan). Deep sequencing of TP53 coding regions was complemented with a specialized variant caller (Needlestack). Overall, 23% to 31% of mutations were concordantly detected in tumor and serum cfDNA (based on two false discovery rate thresholds). Concordance was positively correlated with high cfDNA concentration, smoking history (p-value = 0.02) and mutations with a high potential of neoantigen formation (OR; 95%CI = 1.9 (1.11–3.29)), suggesting that tumor DNA release in the bloodstream might reflect the effects of immune and inflammatory context on tumor cell turnover. We identified TP53 mutations in five controls, one of whom was subsequently diagnosed with ESCC. Overall, the results showed that cfDNA mutations can be reliably identified by deep sequencing of archival serum, with a rate of success comparable to plasma. Nonetheless, 70% non-identifiable mutations among cancer patients and 12% mutation detection in controls are the main challenges in applying cfDNA to detect tumor-related variants when blindly targeting whole coding regions of the TP53 gene in ESCC.