Published in

MDPI, Materials, 17(14), p. 4984, 2021

DOI: 10.3390/ma14174984

Links

Tools

Export citation

Search in Google Scholar

Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This review paper presents the most recent research progress on carbon-based composite electrocatalysts for the oxygen evolution reaction (OER), which are of interest for application in low temperature water electrolyzers for hydrogen production. The reviewed materials are primarily investigated as active and stable replacements aimed at lowering the cost of the metal electrocatalysts in liquid alkaline electrolyzers as well as potential electrocatalysts for an emerging technology like alkaline exchange membrane (AEM) electrolyzers. Low temperature electrolyzer technologies are first briefly introduced and the challenges thereof are presented. The non-carbon electrocatalysts are briefly overviewed, with an emphasis on the modes of action of different active phases. The main part of the review focuses on the role of carbon–metal compound active phase interfaces with an emphasis on the synergistic and additive effects. The procedures of carbon oxidative pretreatment and an overview of metal-free carbon catalysts for OER are presented. Then, the successful synthesis protocols of composite materials are presented with a discussion on the specific catalytic activity of carbon composites with metal hydroxides/oxyhydroxides/oxides, chalcogenides, nitrides and phosphides. Finally, a summary and outlook on carbon-based composites for low temperature water electrolysis are presented.