Full text: Download
This paper demonstrates the ability of a functional food based on probiotics and selenium nanoparticles (SeNPs) to annihilate the toxic effect of cadmium on the kidneys. SeNPs were obtained by eco-friendly method used Lactobacillus casei. The morphological features and size of SeNPS were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS). Two kind of SeNPs were used, purified and Lacto-SeNPs (LSeNPs), administered by gavage at three concentrations (0.1, 0.2, and 0.4 mg/Kg b.w.) for 30 days in a mouse model of cadmium renal toxicity. The blood marker of renal injury (creatinine) significantly decreased in groups where the mice were treated with both form of SeNPs. The antioxidant capacity of plasma was evaluated by Trolox Equivalent Antioxidant Capacity (TEAC) assay and revealed that SeNPs in co-treatment with Cd, promotes maintaining antioxidant activity at the control level. Histopathological analysis of kidneys demonstrated morphological alteration in the group that received only cadmium and restored after administration of SeNPs or LSeNPs. In addition, immunohistochemical analysis revealed anti-apoptotic effects through reduction of pro-apoptotic bax and increasing of anti-apoptotic Bcl-2 protein expressions. Moreover, co-administration of Cd with SeNPs significantly decreased gene expression of kidneys inflammatory markers (TNF-α, IL-6, NF-ĸB) in a dose dependent manner, with the best results for LSeNPs at highest dose (0.4 mg/kg). Therefore, the L. casei strain is a potential SeNPs-enriched probiotic for application as functional food in the future to annihilate cadmium-induced kidneys toxicity.