Published in

MDPI, NeuroSci, 1(4), p. 1-8, 2022

DOI: 10.3390/neurosci4010001

Links

Tools

Export citation

Search in Google Scholar

Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: There is consistent evidence of the potential benefits of lithium attenuating mechanisms of neurodegeneration, including those related to the pathophysiology of Alzheimer’s disease (AD), and facilitating neurotrophic and protective responses, including maintenance of telomere length. The aim was to investigate the protective effect of the pre-treatment with lithium on amyloid-beta (Aβ)-induced toxicity and telomere length in neurons. Methods: Cortical neurons were treated with lithium chloride at therapeutic and subtherapeutic concentrations (2 mM, 0.2 mM and 0.02 mM) for seven days. Amyloid toxicity was induced 24 h before the end of lithium treatment. Results: Lithium resulted in 120% (2 mM), 180% (0.2 mM) and 140% (0.02 mM) increments in telomere length as compared to untreated controls. Incubation with Aβ1-42 was associated with significant reductions in MTT uptake (33%) and telomere length (83%) as compared to controls. Conclusions: Lithium prevented loss of culture viability and telomere shortening in neuronal cultures challenged with Aβ fibrils.