Dissemin is shutting down on January 1st, 2025

Published in

Emerald, Information Technology & People, 2021

DOI: 10.1108/itp-07-2020-0534

Links

Tools

Export citation

Search in Google Scholar

Privacy-preserving AI-enabled video surveillance for social distancing: responsible design and deployment for public spaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose The paper proposes a privacy-preserving artificial intelligence-enabled video surveillance technology to monitor social distancing in public spaces. Design/methodology/approach The paper proposes a new Responsible Artificial Intelligence Implementation Framework to guide the proposed solution's design and development. It defines responsible artificial intelligence criteria that the solution needs to meet and provides checklists to enforce the criteria throughout the process. To preserve data privacy, the proposed system incorporates a federated learning approach to allow computation performed on edge devices to limit sensitive and identifiable data movement and eliminate the dependency of cloud computing at a central server. Findings The proposed system is evaluated through a case study of monitoring social distancing at an airport. The results discuss how the system can fully address the case study's requirements in terms of its reliability, its usefulness when deployed to the airport's cameras, and its compliance with responsible artificial intelligence. Originality/value The paper makes three contributions. First, it proposes a real-time social distancing breach detection system on edge that extends from a combination of cutting-edge people detection and tracking algorithms to achieve robust performance. Second, it proposes a design approach to develop responsible artificial intelligence in video surveillance contexts. Third, it presents results and discussion from a comprehensive evaluation in the context of a case study at an airport to demonstrate the proposed system's robust performance and practical usefulness.