Research, Society and Development, 7(10), p. e24710716535, 2021
Em muitos países tropicais incluindo Brasil observou-se que as mudanças nos padrões de chuva causam inundações e secas com tendência a continuar se agravar durante século 21. Para diminuir as consequências na vida e saúde humana, atividades econômicas, ecossistemas e infraestrutura é necessário desenvolver modelos de previsão mais confiáveis. O primeiro passo nesta direção é uma análise detalhada da variabilidade climática na região estudada. Neste trabalho analisou-se propriedades multifractais das séries temporais do Índice de Precipitação Padronizado (SPI), desenvolvido para classificar condições secas/úmidas de acordo com severidade. Este índice foi calculado para diferentes escalas de tempo (1, 3, 6 e 12 meses) e analisado utilizando o método Multifractal detrended fluctuation analysis. Os parâmetros de complexidade do espectro multifractal (posição de máximo, largura e assimetria) junto com o expoente de Hurst, mostraram que as séries de SPI são geradas pelo processo multifractal com multifractalidade e persistência mais forte para maiores escalas de acumulação da chuva.