Published in

Public Library of Science, PLoS Medicine, 10(18), p. e1003834, 2021

DOI: 10.1371/journal.pmed.1003834

Links

Tools

Export citation

Search in Google Scholar

Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Food biodiversity, encompassing the variety of plants, animals, and other organisms consumed as food and drink, has intrinsic potential to underpin diverse, nutritious diets and improve Earth system resilience. Dietary species richness (DSR), which is recommended as a crosscutting measure of food biodiversity, has been positively associated with the micronutrient adequacy of diets in women and young children in low- and middle-income countries (LMICs). However, the relationships between DSR and major health outcomes have yet to be assessed in any population. Methods and findings We examined the associations between DSR and subsequent total and cause-specific mortality among 451,390 adults enrolled in the European Prospective Investigation into Cancer and Nutrition (EPIC) study (1992 to 2014, median follow-up: 17 years), free of cancer, diabetes, heart attack, or stroke at baseline. Usual dietary intakes were assessed at recruitment with country-specific dietary questionnaires (DQs). DSR of an individual’s yearly diet was calculated based on the absolute number of unique biological species in each (composite) food and drink. Associations were assessed by fitting multivariable-adjusted Cox proportional hazards regression models. In the EPIC cohort, 2 crops (common wheat and potato) and 2 animal species (cow and pig) accounted for approximately 45% of self-reported total dietary energy intake [median (P10–P90): 68 (40 to 83) species consumed per year]. Overall, higher DSR was inversely associated with all-cause mortality rate. Hazard ratios (HRs) and 95% confidence intervals (CIs) comparing total mortality in the second, third, fourth, and fifth (highest) quintiles (Qs) of DSR to the first (lowest) Q indicate significant inverse associations, after stratification by sex, age, and study center and adjustment for smoking status, educational level, marital status, physical activity, alcohol intake, and total energy intake, Mediterranean diet score, red and processed meat intake, and fiber intake [HR (95% CI): 0.91 (0.88 to 0.94), 0.80 (0.76 to 0.83), 0.69 (0.66 to 0.72), and 0.63 (0.59 to 0.66), respectively; PWald < 0.001 for trend]. Absolute death rates among participants in the highest and lowest fifth of DSR were 65.4 and 69.3 cases/10,000 person-years, respectively. Significant inverse associations were also observed between DSR and deaths due to cancer, heart disease, digestive disease, and respiratory disease. An important study limitation is that our findings were based on an observational cohort using self-reported dietary data obtained through single baseline food frequency questionnaires (FFQs); thus, exposure misclassification and residual confounding cannot be ruled out. Conclusions In this large Pan-European cohort, higher DSR was inversely associated with total and cause-specific mortality, independent of sociodemographic, lifestyle, and other known dietary risk factors. Our findings support the potential of food (species) biodiversity as a guiding principle of sustainable dietary recommendations and food-based dietary guidelines.