Published in

MDPI, Crystals, 12(8), p. 464, 2018

DOI: 10.3390/cryst8120464

Links

Tools

Export citation

Search in Google Scholar

A Simple Technique to Improve Microcrystals Using Gel Exclusion of Nucleation Inducing Elements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A technique is described for generating large well diffracting crystals from conditions that yield microcrystals. Crystallization using this technique is both rapid (crystals appear in <1 h) and robust (48 out of 48 co-crystallized with a fragment library, compared with 26 out of 48 using conventional hanging drop). Agarose gel is used to exclude nucleation inducing elements from the remaining crystallization cocktail. The chemicals in the crystallization cocktail are partitioned into high concentration components (presumed to induce aggregation by reducing water activity) and low concentration nucleation agents (presumed to induce nucleation through direct interaction). The nucleation agents are then combined with 2% agarose gel and deposited on the crystallization shelf of a conventional vapor diffusion plate. The remaining components are mixed with the protein and placed in contact with the agarose drop. This technique yielded well diffracting crystals of lysozyme, cubic insulin, proteinase k, and ferritin (ferritin crystals diffracted to 1.43 Å). The crystals grew rapidly, reaching large size in less than one hour (maximum size was achieved in 1–12 h). This technique is not suitable for poorly expressing proteins because small protein volumes diffuse out of the agarose gel too quickly. However, it is a useful technique for situations where crystals must grow rapidly (such as educational applications and preparation of beamline test specimens) and in situations where crystals must grow robustly (such as co-crystallization with a fragment library).