Published in

IOS Press, Journal of Alzheimer's Disease, 1(77), p. 191-202, 2020

DOI: 10.3233/jad-200194

Links

Tools

Export citation

Search in Google Scholar

Cerebral Vasomotor Reactivity in Amnestic Mild Cognitive Impairment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Cerebral blood flow (CBF) is sensitive to changes in arterial CO2, referred to as cerebral vasomotor reactivity (CVMR). Whether CVMR is altered in patients with amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer disease (AD), is unclear. Objective: To determine whether CVMR is altered in aMCI and is associated with cognitive performance. Methods: Fifty-three aMCI patients aged 55 to 80 and 22 cognitively normal subjects (CN) of similar age, sex, and education underwent measurements of CBF velocity (CBFV) with transcranial Doppler and end-tidal CO2 (EtCO2) with capnography during hypocapnia (hyperventilation) and hypercapnia (rebreathing). Arterial pressure (BP) was measured to calculate cerebrovascular conductance (CVCi) to normalize the effect of changes in BP on CVMR assessment. Cognitive function was assessed with Mini-Mental State Examination (MMSE) and neuropsychological tests focused on memory (Logical Memory, California Verbal Learning Test) and executive function (Delis-Kaplan Executive Function Scale; DKEFS). Results: At rest, CBFV and MMSE did not differ between groups. CVMR was reduced by 13% in CBFV% and 21% in CVCi% during hypocapnia and increased by 22% in CBFV% and 20% in CVCi% during hypercapnia in aMCI when compared to CN (all p < 0.05). Logical Memory recall scores were positively correlated with hypocapnia (r = 0.283, r = 0.322, p < 0.05) and negatively correlated with hypercapnic CVMR measured in CVCi% (r = –0.347, r = –0.446, p < 0.01). Similar correlations were observed in D-KEFS Trail Making scores. Conclusion: Altered CVMR in aMCI and its associations with cognitive performance suggests the presence of cerebrovascular dysfunction in older adults who have high risks for AD.