Published in

MDPI, Water, 9(12), p. 2606, 2020

DOI: 10.3390/w12092606

Links

Tools

Export citation

Search in Google Scholar

Leverage Points Used in a Systems Approach of River and River Basin Restoration

Journal article published in 2020 by Theodore A. Endreny ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

River basins are complex spatiotemporal systems, and too often, restoration efforts are ineffective due to a lack of understanding of the purpose of the system, defined by the system structure and function. The river basin system structure includes stocks (e.g., water volume or quality), inflows (e.g., precipitation or fertilization), outflows (e.g., evaporation or runoff), and positive and negative feedback loops with delays in responsiveness, that all function to change or stabilize the state of the system (e.g., the stock of interest, such as water level or quality). External drivers on this structure, together with goals and rules, contribute to how a river basin functions. This article reviews several new research projects to identify and rank the twelve most effective leverage points to address discrepancies between the desired and actual state of the river basin system. This article demonstrates river basin restoration is most likely to succeed when we change paradigms rather than trying to change the system elements, as the paradigm will establish the system goals, structure, rules, delays, and parameters.