Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6564(374), p. 193-196, 2021

DOI: 10.1126/science.abg2689

Links

Tools

Export citation

Search in Google Scholar

Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Longer and stronger; stiff but not brittle Hydrogels are highly water-swollen, cross-linked polymers. Although they can be highly deformed, they tend to be weak, and methods to strengthen or toughen them tend to reduce stretchability. Two papers now report strategies to create tough but deformable hydrogels (see the Perspective by Bosnjak and Silberstein). Wang et al . introduced a toughening mechanism by storing releasable extra chain length in the stiff part of a double-network hydrogel. A high applied force triggered the opening of cycling strands that were only activated at high chain extension. Kim et al . synthesized acrylamide gels in which dense entanglements could be achieved by using unusually low amounts of water, cross-linker, and initiator during the synthesis. This approach improves the mechanical strength in solid form while also improving the wear resistance once swollen as a hydrogel. —MSL