Dissemin is shutting down on January 1st, 2025

Published in

Lippincott, Williams & Wilkins, Neurology: Genetics, 3(7), p. e596, 2021

DOI: 10.1212/nxg.0000000000000596

Links

Tools

Export citation

Search in Google Scholar

Novel TUBA4A Variant Associated With Familial Frontotemporal Dementia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ObjectiveDespite the strong genetic component of frontotemporal dementia (FTD), a substantial proportion of patients remain genetically unresolved. We performed an in-depth study of a family with an autosomal dominant form of FTD to investigate the underlying genetic cause.MethodsFollowing clinical and pathologic characterization of the family, genetic studies included haplotype sharing analysis and exome sequencing. Subsequently, we performed immunohistochemistry, immunoblotting, and a microtubule repolymerization assay to investigate the potential impact of the candidate variant in tubulin alpha 4a (TUBA4A).ResultsThe clinical presentation in this family is heterogeneous, including behavioral changes, parkinsonian features, and uncharacterized dementia. Neuropathologic examination of 2 patients revealed TAR DNA binding protein 43 (TDP-43) pathology with abundant dystrophic neurites and neuronal intranuclear inclusions, consistent with frontotemporal lobar degeneration–TDP type A. We identified a likely pathogenic variant in TUBA4A segregating with disease. TUBA4A encodes for α-tubulin, which is a major component of the microtubule network. Variants in TUBA4A have been suggested as a rare genetic cause of amyotrophic lateral sclerosis (ALS) and have sporadically been reported in patients with FTD without supporting genetic segregation. A decreased trend of TUBA4A protein abundance was observed in patients compared with controls, and a microtubule repolymerization assay demonstrated disrupted α-tubulin function. As opposed to variants found in ALS, TUBA4A variants associated with FTD appear more localized to the N-terminus, indicating different pathogenic mechanisms.ConclusionsOur findings support the role of TUBA4A variants as rare genetic cause of familial FTD.