Published in

Nature Research, Communications Biology, 1(4), 2021

DOI: 10.1038/s42003-021-02622-z

Links

Tools

Export citation

Search in Google Scholar

GenNet framework: interpretable deep learning for predicting phenotypes from genetic data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractApplying deep learning in population genomics is challenging because of computational issues and lack of interpretable models. Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants. In this framework, interpretable and memory-efficient neural network architectures are constructed by embedding biologically knowledge from public databases, resulting in neural networks that contain only biologically plausible connections. We applied the framework to seventeen phenotypes and found well-replicated genes such as HERC2 and OCA2 for hair and eye color, and novel genes such as ZNF773 and PCNT for schizophrenia. Additionally, the framework identified ubiquitin mediated proteolysis, endocrine system and viral infectious diseases as most predictive biological pathways for schizophrenia. GenNet is a freely available, end-to-end deep learning framework that allows researchers to develop and use interpretable neural networks to obtain novel insights into the genetic architecture of complex traits and diseases.