Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Supplement, 1(253), p. 11, 2021

DOI: 10.3847/1538-4365/abd4e3

Links

Tools

Export citation

Search in Google Scholar

TESS Observations of Cepheid Stars: First Light Results

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present the first analysis of Cepheid stars observed by the TESS space mission in Sectors 1–5. Our sample consists of 25 pulsators: ten fundamental mode, three overtone and two double-mode classical Cepheids, plus three type II and seven anomalous Cepheids. The targets were chosen from fields with different stellar densities, both from the Galactic field and from the Magellanic System. Three targets have 2 minutes cadence light curves available by the TESS Science Processing Operations Center: for the rest, we prepared custom light curves from the full-frame images with our own differential photometric FITSH pipeline. Our main goal was to explore the potential and the limitations of TESS concerning the various subtypes of Cepheids. We detected many low-amplitude features: weak modulation, period jitter, and timing variations due to light-time effect. We also report signs of nonradial modes and the first discovery of such a mode in an anomalous Cepheid, the overtone star XZ Cet, which we then confirmed with ground-based multicolor photometric measurements. We prepared a custom photometric solution to minimize saturation effects in the bright fundamental-mode classical Cepheid, β Dor with the lightkurve software, and we revealed strong evidence of cycle-to-cycle variations in the star. In several cases, however, fluctuations in the pulsation could not be distinguished from instrumental effects, such as contamination from nearby sources, which also varies between sectors. Finally, we discuss how precise light-curve shapes will be crucial not only for classification purposes but also to determine physical properties of these stars.