Published in

Bentham Science Publishers, Current Medicinal Chemistry, 17(29), p. 3028-3049, 2022

DOI: 10.2174/0929867328666210910125229

Links

Tools

Export citation

Search in Google Scholar

The role of celecoxib as a potential inhibitor in the treatment of inflammatory diseases - a review

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract: This article aims at reviewing celecoxib as a potential inhibitor in the treatment of inflammatory diseases. The enzyme cyclooxygenase (COX) predominantly has two isoforms called cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). The former plays a constitutive role related to homeostatic effects in renal and platelets, while the latter is mainly responsible for the induction of inflammatory effects. Since COX-2 plays an important role in the pathogenesis of inflammatory diseases, it has been signaled as a target for the planning of anti-inflammatory intermediates. Many inhibitors developed and planned for COX-2 inhibition have presented side effects to humans, mainly in the gastrointestinal and/or cardiovascular tract. Therefore, it is necessary to design new potential COX-2 inhibitors, which are relatively safe and have no side effects. In this sense, celecoxib is the only potent, selective COX-2 inhibitor that is still commercially available (within the “coxib” family). Thus, celecoxib became a commercial prototype inhibitor for the development of anti-inflammatory agents for the COX-2 enzyme. This review provides inhibition highlights that should provide a structural basis for the design of promising new non-steroidal anti-inflammatory drugs (NSAIDs), which act as COX-2 inhibitors with lesser side effects on the human body.