Published in

Public Library of Science, PLoS Computational Biology, 5(17), p. e1008881, 2021

DOI: 10.1371/journal.pcbi.1008881

Links

Tools

Export citation

Search in Google Scholar

CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, we describe the CRIMSON (CardiovasculaR Integrated Modelling and SimulatiON) software environment. CRIMSON provides a powerful, customizable and user-friendly system for performing three-dimensional and reduced-order computational haemodynamics studies via a pipeline which involves: 1) segmenting vascular structures from medical images; 2) constructing analytic arterial and venous geometric models; 3) performing finite element mesh generation; 4) designing, and 5) applying boundary conditions; 6) running incompressible Navier-Stokes simulations of blood flow with fluid-structure interaction capabilities; and 7) post-processing and visualizing the results, including velocity, pressure and wall shear stress fields. A key aim of CRIMSON is to create a software environment that makes powerful computational haemodynamics tools accessible to a wide audience, including clinicians and students, both within our research laboratories and throughout the community. The overall philosophy is to leverage best-in-class open source standards for medical image processing, parallel flow computation, geometric solid modelling, data assimilation, and mesh generation. It is actively used by researchers in Europe, North and South America, Asia, and Australia. It has been applied to numerous clinical problems; we illustrate applications of CRIMSON to real-world problems using examples ranging from pre-operative surgical planning to medical device design optimization.