Published in

MDPI, International Journal of Molecular Sciences, 7(22), p. 3413, 2021

DOI: 10.3390/ijms22073413

Links

Tools

Export citation

Search in Google Scholar

5-O-methylcneorumchromone K Exerts Antinociceptive Effects in Mice via Interaction with GABAA Receptors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The proper pharmacological control of pain is a continuous challenge for patients and health care providers. Even the most widely used medications for pain treatment are still ineffective or unsafe for some patients, especially for those who suffer from chronic pain. Substances containing the chromone scaffold have shown a variety of biological activities, including analgesic effects. This work presents for the first time the centrally mediated antinociceptive activity of 5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the 5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to further investigate 5-CK’s mechanism of action. Next, based on the results of fingerprints analysis, functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric binding site, with a similar binding profile to that observed for bicuculline and GABA. These results evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation of GABAergic pathways.