Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-23618-7

Links

Tools

Export citation

Search in Google Scholar

Exposing the hidden influence of selection rules on phonon–phonon scattering by pressure and temperature tuning

Journal article published in 2021 by Navaneetha K. Ravichandran ORCID, David Broido ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSelection rules act to restrict the intrinsic anharmonic interactions between phonons in all crystals. Yet their influence on phonon propagation is hidden in most materials and so, hard to interrogate experimentally. Using ab initio calculations, we show that the otherwise invisible impact of selection rules on three-phonon scattering can be exposed through anomalous signatures in the pressure (P) and temperature (T) dependence of the thermal conductivities, κ, of certain compounds. Boron phosphide reveals such underlying behavior through an exceptionally sharp initial rise in κ with increasing P, which may be the steepest of any material, and also a peak and decrease in κ at high P. These features are in stark contrast to the measured behavior for many solids, and they occur at experimentally accessible conditions. These findings give a deep understanding of phonon lifetimes and heat conduction in solids, and motivate experimental efforts to observe the predicted behavior.