Dissemin is shutting down on January 1st, 2025

Published in

Thieme Gruppe, Osteologie, 03(30), p. 211-221, 2021

DOI: 10.1055/a-1514-1618

Links

Tools

Export citation

Search in Google Scholar

Role of miRNAs in Breast Cancer-induced Bone Disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBone is the most common site of breast cancer recurrence. Despite the increasing knowledge about the metastatic process and treatment advances, the disease still remains incurable once the cancer cells actively proliferate in bone. Complex interactions between cancer cells and cells of the bone microenvironment (BME) regulate the initiation and progression of metastatic tumor growth in bone. In particular, breast cancer cells shift the otherwise tightly balanced bone remodeling towards increased bone resorption by osteoclasts. Cellular interactions in the metastatic BME are to a large extent regulated by secreted molecules. These include various cytokines as well as microRNAs (miRNAs), small non-coding RNAs that post transcriptionally regulate protein abundance in several cell types. Through this mechanism, miRNAs modulate physiological and pathological processes including bone remodeling, tumorigenesis and metastasis. Consequently, miRNAs have been identified as important regulators of cellular communication in the metastatic BME. Disruption of the crosstalk between cancer cells and the BME has emerged as a promising therapeutic target to prevent the establishment and progression of breast cancer bone metastasis. In this context, miRNA mimics or antagonists present innovative therapeutic approaches of high potential for interfering with pathological bone – cancer cell interactions. This review will discuss the role of miRNAs in the tumor-BME crosstalk in vivo and will emphasize how this could be targeted by miRNAs to improve therapeutic outcome for patients with breast cancer bone metastases.