Published in

IOP Publishing, Measurement Science and Technology, 11(32), p. 115205, 2021

DOI: 10.1088/1361-6501/ac17ce

Links

Tools

Export citation

Search in Google Scholar

Pulsed LED line light for large-scale PIV—development and use in wave load measurements

Journal article published in 2021 by W. Bakker ORCID, B. Hofland ORCID, E. de Almeida, G. Oldenziel, E. F. J. Overmars
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In this paper the development of a high-power pulsed LED line light and its use to apply particle image velocimetry (PIV) during wave impact measurements are described. An electrical circuit that generates high-current pulses is designed and built, which is used to overdrive a number of commercially available LEDs. The limit for this overdrive-capacity is determined as function of pulse duration for various commercial available LEDs. Two systems of cylindrical convex lenses are designed to act as a collimator and reduce divergence of the LED bundle and the resulting light sheet properties (maximum light intensity and sheet thickness) are investigated. An array of LEDs of 60 cm length (referred to as the LED line light) is designed and manufactured. For the two lens systems, the LED line light provides proper light sheet conditions to illuminate measurement regions in the order of either 0.3 × 0.3 m2, or 1 × 1 m2, at a sufficiently constant light sheet thickness of 5 mm. The application of the LED line light is demonstrated by quantifying the instantaneous flow field of a wave impacting on a blunt object in a wave flume. PIV measurements are conducted at an acquisition rate of 25 frame pairs per second, quantifying maximum flow velocities in the order of 1.0 m s−1 at a LED pulse width of 200 μs. The system, consisting of the LED line light, a CMOS camera and open source PIV processing software provides the possibility to perform 2D planar PIV measurements for a fraction of the costs of a commercially available laser based PIV system.