Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-25706-0

Links

Tools

Export citation

Search in Google Scholar

Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Weissert Event ~133 million years ago marked a profound global cooling that punctuated the Early Cretaceous greenhouse. We present modelling, high-resolution bulk organic carbon isotopes and chronostratigraphically calibrated sea surface temperature (SSTs) based on an organic paleothermometer (the TEX86 proxy), which capture the Weissert Event in the semi-enclosed Weddell Sea basin, offshore Antarctica (paleolatitude ~54 °S; paleowater depth ~500 meters). We document a ~3–4 °C drop in SST coinciding with the Weissert cold end, and converge the Weddell Sea data, climate simulations and available worldwide multi-proxy based temperature data towards one unifying solution providing a best-fit between all lines of evidence. The outcome confirms a 3.0 °C ( ±1.7 °C) global mean surface cooling across the Weissert Event, which translates into a ~40% drop in atmospheric pCO2 over a period of ~700 thousand years. Consistent with geologic evidence, this pCO2 drop favoured the potential build-up of local polar ice.