Published in

Frontiers Media, Frontiers in Genetics, (12), 2021

DOI: 10.3389/fgene.2021.719456

Links

Tools

Export citation

Search in Google Scholar

Epigenetic Regulation of Vascular Smooth Muscle Cell Phenotype Switching in Atherosclerotic Artery Remodeling: A Mini-Review

Journal article published in 2021 by Michelle Zurek, Einari Aavik, Rahul Mallick ORCID, Seppo Ylä-Herttuala
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by extensive remodeling of medium and large-sized arteries. Inward remodeling (=lumen shrinkage) of the vascular walls is the underlying cause for ischemia in target organs. Therefore, inward remodeling can be considered the predominant feature of atherosclerotic pathology. Outward remodeling (=lumen enlargement) is a physiological response compensating for lumen shrinkage caused by neointimal hyperplasia, but as a pathological response to changes in blood flow, outward remodeling leads to substantial arterial wall thinning. Thinned vascular walls are prone to rupture, and subsequent thrombus formation accounts for the majority of acute cardiovascular events. Pathological remodeling is driven by inflammatory cells which induce vascular smooth muscle cells to switch from quiescent to a proliferative and migratory phenotype. After decades of intensive research, the molecular mechanisms of arterial remodeling are starting to unfold. In this mini-review, we summarize the current knowledge of the epigenetic and transcriptional regulation of vascular smooth muscle cell phenotype switching from the contractile to the synthetic phenotype involved in arterial remodeling and discuss potential therapeutic options.