Published in

BioMed Central, Molecular Medicine, 1(27), 2021

DOI: 10.1186/s10020-021-00286-3

Links

Tools

Export citation

Search in Google Scholar

Increased complement activation 3 to 6 h after trauma is a predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome: a prospective observational study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundComplement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome.MethodsIn a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3–6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients’ admission TCC, TCC-AUC3–6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures.ResultsTCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3–6correlated positively with New Injury Severity Score (Spearman’s rho,p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (− 0.21, 0.02 and − 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3–6were negatively associated with ventilator-free days. TCC-AUC3–6outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4.ConclusionsComplement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors.