Published in

MDPI, Biomedicines, 8(9), p. 1072, 2021

DOI: 10.3390/biomedicines9081072

Links

Tools

Export citation

Search in Google Scholar

Optimized Manufacture of Lyophilized Dermal Fibroblasts for Next-Generation Off-the-Shelf Progenitor Biological Bandages in Topical Post-Burn Regenerative Medicine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential for effective repair stimulation of wounded tissues. Major technical bottlenecks in cell therapy development comprise sustainability, stability, and logistics of biological material sources. Herein, we report stringently optimized and up-scaled processing (i.e., cell biobanking and stabilization by lyophilization) of dermal FPCs, with the objective of addressing potential cell source sustainability and stability issues with regard to active substance manufacturing in cutaneous regenerative medicine. Firstly, multi-tiered FPC banking was optimized in terms of overall quality and efficiency by benchmarking key reagents (e.g., medium supplement source, dissociation reagent), consumables (e.g., culture vessels), and technical specifications. Therein, fetal bovine serum batch identity and culture vessel surface were confirmed, among other parameters, to largely impact harvest cell yields. Secondly, FPC stabilization by lyophilization was undertaken and shown to maintain critical functions for devitalized cells in vitro, potentially enabling high logistical gains. Overall, this study provides the technical basis for the elaboration of next-generation off-the-shelf topical regenerative medicine therapeutic products for wound healing and post-burn care.