Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Research, 22(81), p. 5720-5732, 2021

DOI: 10.1158/0008-5472.can-21-0646

Links

Tools

Export citation

Search in Google Scholar

Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Hypercholesterolemia is a prevalent metabolic disorder that has been implicated in the development of steroid-targeted cancers. However, the link between hypercholesterolemia and urinary bladder cancer (UBC), a non–steroid-targeted cancer, remains unresolved. Here we show that diet-induced and Ldlr deficiency–induced hypercholesterolemia enhances both UBC stemness and progression. Inhibition of intestinal cholesterol absorption by ezetimibe reversed diet-induced hypercholesterolemia and cancer stemness. As a key component in hypercholesterolemic sera, oxidized low-density lipoprotein (ox-LDL), but not native low-density lipoprotein-cholesterol or metabolite 27-hydroxycholesterol, increased cancer stemness through its receptor CD36. Depletion of CD36, ectopic expression of an ox-LDL binding–disabled mutant form of CD36(K164A), and the neutralization of ox-LDL and CD36 via neutralizing antibodies all reversed ox-LDL–induced cancer stemness. Mechanistically, ox-LDL enhanced the interaction of CD36 and JAK2, inducing phosphorylation of JAK2 and subsequently activating STAT3 signaling, which was not mediated by JAK1 or Src in UBC cells. Finally, ox-LDL levels in serum predicted poor prognosis, and the ox-LDLhigh signature predicted worse survival in patients with UBC. These findings indicate that ox-LDL links hypercholesterolemia with UBC progression by enhancing cancer stemness. Lowering serum ox-LDL or targeting the CD36/JAK2/STAT3 axis might serve as a potential therapeutic strategy for UBCs with hypercholesterolemia. Moreover, elevated ox-LDL may serve as a biomarker for UBC. Significance: This study demonstrates how hypercholesterolemia-induced oxidized LDL promotes urinary bladder cancer stemness via a CD36/STAT3 signaling axis, highlighting these factors as biomarkers and potential therapeutic targets of aggressive disease.