Published in

MDPI, Cells, 5(10), p. 977, 2021

DOI: 10.3390/cells10050977

Links

Tools

Export citation

Search in Google Scholar

Identification of 15 lncRNAs Signature for Predicting Survival Benefit of Advanced Melanoma Patients Treated with Anti-PD-1 Monotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The blockade of programmed cell death protein 1 (PD-1) as monotherapy has been widely used in melanoma, but to identify melanoma patients with survival benefit from anti-PD-1 monotherapy is still a big challenge. There is an urgent need for prognostic signatures improving the prediction of immunotherapy responses of these patients. We analyzed transcriptomic data of pre-treatment tumor biopsies and clinical profiles in advanced melanoma patients receiving only anti-PD-1 monotherapy (nivolumab or pembrolizumab) from the PRJNA356761 and PRJEB23709 data sets as the training and validation cohort, respectively. Weighted gene co-expression network analysis was used to identify the key module, then least absolute shrinkage and selection operator was conducted to determine prognostic-related long noncoding RNAs (lncRNAs). Subsequently, the differentially expressed genes between different clusters were identified, and their function and pathway annotation were performed. In this investigation, 92 melanoma patients with complete survival information (51 from training cohort and 41 from validation cohort) were included in our analyses. We initiallyidentified the key module (skyblue) by weighted gene co-expression network analysis, and then identified a 15 predictive lncRNAs (AC010904.2, LINC01126, AC012360.1, AC024933.1, AL442128.2, AC022211.4, AC022211.2, AC127496.5, NARF-AS1, AP000919.3, AP005329.2, AC023983.1, AC023983.2, AC139100.1, and AC012615.4) signature in melanoma patients treated with anti-PD-1 monotherapy by least absolute shrinkage and selection operator in the training cohort. These results were then validated in the validation cohort. Finally, enrichment analysis showed that the functions of differentially expressed genes between two consensus clusters were mainly related to the immune process and treatment. In summary, the 15 lncRNAs signature is a novel effective predictor for prognosis in advanced melanoma patients treated with anti-PD-1 monotherapy.