Published in

MDPI, Biomedicines, 8(9), p. 865, 2021

DOI: 10.3390/biomedicines9080865

Links

Tools

Export citation

Search in Google Scholar

A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome

Journal article published in 2021 by Tadeja Kuret ORCID, Dominika Peskar, Andreja Erman, Peter Veranič
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.