Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), JAMIA: A Scholarly Journal of Informatics in Health and Biomedicine, 9(28), p. 2050-2067, 2021

DOI: 10.1093/jamia/ocab098

Links

Tools

Export citation

Search in Google Scholar

The application of artificial intelligence and data integration in COVID-19 studies: a scoping review

Journal article published in 2021 by Yi Guo ORCID, Yahan Zhang, Tianchen Lyu, Mattia Prosperi ORCID, Fei Wang, Hua Xu ORCID, Jiang Bian ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objective To summarize how artificial intelligence (AI) is being applied in COVID-19 research and determine whether these AI applications integrated heterogenous data from different sources for modeling. Materials and Methods We searched 2 major COVID-19 literature databases, the National Institutes of Health’s LitCovid and the World Health Organization’s COVID-19 database on March 9, 2021. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, 2 reviewers independently reviewed all the articles in 2 rounds of screening. Results In the 794 studies included in the final qualitative analysis, we identified 7 key COVID-19 research areas in which AI was applied, including disease forecasting, medical imaging-based diagnosis and prognosis, early detection and prognosis (non-imaging), drug repurposing and early drug discovery, social media data analysis, genomic, transcriptomic, and proteomic data analysis, and other COVID-19 research topics. We also found that there was a lack of heterogenous data integration in these AI applications. Discussion Risk factors relevant to COVID-19 outcomes exist in heterogeneous data sources, including electronic health records, surveillance systems, sociodemographic datasets, and many more. However, most AI applications in COVID-19 research adopted a single-sourced approach that could omit important risk factors and thus lead to biased algorithms. Integrating heterogeneous data for modeling will help realize the full potential of AI algorithms, improve precision, and reduce bias. Conclusion There is a lack of data integration in the AI applications in COVID-19 research and a need for a multilevel AI framework that supports the analysis of heterogeneous data from different sources.