Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 14(21), p. 4669, 2021

DOI: 10.3390/s21144669

Links

Tools

Export citation

Search in Google Scholar

Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.