Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Cell Science, 3(112), p. 415-422, 1999

DOI: 10.1242/jcs.112.3.415

Links

Tools

Export citation

Search in Google Scholar

The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane

Journal article published in 1999 by R. J. Raggers, A. Van Helvoort ORCID, R. Evers, G. Van Meer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Recently, we have provided evidence that the ABC-transporter MDR1 P-glycoprotein translocates analogs of various lipid classes across the apical plasma membrane of polarized LLC-PK1 cells transfected with MDR1 cDNA. Here, we show that expression of the basolateral ABC-transporter MRP1 (the multidrug resistance protein) induced lipid transport to the exoplasmic leaflet of the basolateral plasma membrane of LLC-PK1 cells at 15 degreesC. C6-NBD-glucosylceramide synthesized on the cytosolic side of the Golgi complex, but not C6-NBD-sphingomyelin synthesized in the Golgi lumen, became accessible to depletion by BSA in the basal culture medium. This suggests the absence of vesicular traffic and direct translocation of C6-NBD-glucosylceramide by MRP1 across the basolateral membrane. In line with this, transport of the lipid to the exoplasmic leaflet depended on the intracellular glutathione concentration and was inhibited by the MRP1-inhibitors sulfinpyrazone and indomethacin, but not by the MDR1 P-glycoprotein inhibitor PSC 833. In contrast to the broad substrate specificity of the MDR1 P-glycoprotein, MRP1 selectively transported C6-NBD-glucosylceramide and C6-NBD-sphingomyelin, the latter only when it was released from the Golgi lumen by brefeldin A. This shows the specific nature of the lipid translocation. We conclude that the transport activity of MDR1 P-glycoprotein and MRP1 must be taken into account in studies on the transport of lipids to the cell surface.