Published in

Oxford University Press, Journal of Antimicrobial Chemotherapy, 3(75), p. 628-639, 2019

DOI: 10.1093/jac/dkz479

Links

Tools

Export citation

Search in Google Scholar

Population pharmacokinetics and pharmacogenetics of ritonavir-boosted darunavir in the presence of raltegravir or tenofovir disoproxil fumarate/emtricitabine in HIV-infected adults and the relationship with virological response: A sub-study of the NEAT001/ANRS143 randomized trial

Journal article published in 2020 by Laura Dickinson, Rohan Gurjar, Wolfgang Stöhr, Stefano Bonora, Andrew Owen, Antonio D’Avolio, A. D'Avolio, Adam Cursley, Jean-Michel Molina, Gerd Fäetkenheuer, Linos Vandekerckhove, Giovanni Di Perri, Anton Pozniak, François Raffi, Laura Richert and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives NEAT001/ANRS143 demonstrated non-inferiority of once-daily darunavir/ritonavir (800/100 mg) + twice-daily raltegravir (400 mg) versus darunavir/ritonavir + tenofovir disoproxil fumarate/emtricitabine (245/200 mg once daily) in treatment-naive patients. We investigated the population pharmacokinetics of darunavir, ritonavir, tenofovir and emtricitabine and relationships with demographics, genetic polymorphisms and virological failure. Methods Non-linear mixed-effects models (NONMEM v. 7.3) were applied to determine pharmacokinetic parameters and assess demographic covariates and relationships with SNPs (SLCO3A1, SLCO1B1, NR1I2, NR1I3, CYP3A5*3, CYP3A4*22, ABCC2, ABCC10, ABCG2 and SCL47A1). The relationship between model-predicted darunavir AUC0–24 and C24 with time to virological failure was evaluated by Cox regression. Results Of 805 enrolled, 716, 720, 347 and 361 were included in the darunavir, ritonavir, tenofovir and emtricitabine models, respectively (11% female, 83% Caucasian). No significant effect of patient demographics or SNPs was observed for darunavir or tenofovir apparent oral clearance (CL/F); coadministration of raltegravir did not influence darunavir or ritonavir CL/F. Ritonavir CL/F decreased by 23% in NR1I2 63396C>T carriers and emtricitabine CL/F was linearly associated with creatinine clearance (P<0.001). No significant relationship was demonstrated between darunavir AUC0–24 or C24 and time to virological failure [HR (95% CI): 2.28 (0.53–9.80), P=0.269; and 1.82 (0.61–5.41), P=0.279, respectively]. Conclusions Darunavir concentrations were unaltered in the presence of raltegravir and not associated with virological failure. Polymorphisms investigated had little impact on study-drug pharmacokinetics. Darunavir/ritonavir + raltegravir may be an appropriate option for patients experiencing NRTI-associated toxicity.