Published in

arXiv, 2021

DOI: 10.48550/arxiv.2106.15163

American Astronomical Society, Astrophysical Journal Letters, 1(915), p. L5, 2021

DOI: 10.3847/2041-8213/ac082e

Links

Tools

Export citation

Search in Google Scholar

Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

Journal article published in 2021 by Ligo Scientific Collaboration, L. di Fiore, C. di Fronzo, C. di Giorgio, F. di Giovanni, T. di Girolamo, A. di Lieto, S. di Pace, I. di Palma, F. di Renzo, Ho W. C. G., F. Hernandez Vivanco, P. Wessels, Virgo Collaboration and the Kagra Collaboration The Ligo Scientific Collaboration, J. Van Heijningen and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8 . 9 − 1 . 5 + 1. 2 and 1. 9 − 0. 2 + 0. 3 M ⊙ , whereas the source of GW200115 has component masses 5. 7 − 2 . 1 + 1. 8 and 1. 5 − 0. 3 + 0. 7 M ⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280 − 110 + 110 and 300 − 100 + 150 Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45 − 33 + 75 Gpc − 3 yr − 1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130 − 69 + 112 Gpc − 3 yr − 1 under the assumption of a broader distribution of component masses.