Published in

American Association for the Advancement of Science, Science, 6553(373), 2021

DOI: 10.1126/science.abf7844

Links

Tools

Export citation

Search in Google Scholar

Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Getting around the blood–brain barrier The meninges comprise three membranes that surround and protect the central nervous system (CNS). Recent studies have noted the existence of myeloid cells resident there, but little is known about their ontogeny and function, and whether other meningeal immune cell populations have important roles remains unclear (see the Perspective by Nguyen and Kubes). Cugurra et al. found in mice that a large proportion of continuously replenished myeloid cells in the dura mater are not blood derived, but rather transit from cranial bone marrow through specialized channels. In models of CNS injury and neuroinflammation, the authors demonstrated that these myeloid cells have an immunoregulatory phenotype compared with their more inflammatory blood-derived counterparts. Similarly, Brioschi et al. show that the meninges host B cells that are also derived from skull bone marrow, mature locally, and likely acquire a tolerogenic phenotype. They further found that the brains of aging mice are infiltrated by a second population of age-associated B cells, which come from the periphery and may differentiate into autoantibody-secreting plasma cells after encountering CNS antigens. Together, these two studies may inform future treatment of neurological diseases. Science , abf7844, abf9277, this issue p. eabf7844 , p. eabf9277 ; see also abj8183, p. 396