Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Medicine, 5(18), p. e1003620, 2021

DOI: 10.1371/journal.pmed.1003620

Links

Tools

Export citation

Search in Google Scholar

Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: A prospective cohort study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background In patients with resectable colorectal liver metastases (CRLM), the role of pre- and postoperative systemic therapy continues to be debated. Previous studies have shown that circulating tumor DNA (ctDNA) analysis, as a marker of minimal residual disease, is a powerful prognostic factor in patients with nonmetastatic colorectal cancer (CRC). Serial analysis of ctDNA in patients with resectable CRLM could inform the optimal use of perioperative chemotherapy. Here, we performed a validation study to confirm the prognostic impact of postoperative ctDNA in resectable CRLM observed in a previous discovery study. Methods and findings We prospectively collected plasma samples from patients with resectable CRLM, including presurgical and postsurgical samples, serial samples during any pre- or postoperative chemotherapy, and serial samples in follow-up. Via targeted sequencing of 15 genes commonly mutated in CRC, we identified at least 1 somatic mutation in each patient’s tumor. We then designed a personalized assay to assess 1 mutation in plasma samples using the Safe-SeqS assay. A total of 380 plasma samples from 54 patients recruited from July 2011 to Dec 2014 were included in our analysis. Twenty-three (43%) patients received neoadjuvant chemotherapy, and 42 patients (78%) received adjuvant chemotherapy after surgery. Median follow-up was 51 months (interquartile range, 31 to 60 months). At least 1 somatic mutation was identified in all patients’ tumor tissue. ctDNA was detectable in 46/54 (85%) patients prior to any treatment and 12/49 (24%) patients after surgery. There was a median 40.93-fold (19.10 to 87.73, P < 0.001) decrease in ctDNA mutant allele fraction with neoadjuvant chemotherapy, but ctDNA clearance during neoadjuvant chemotherapy was not associated with a better recurrence-free survival (RFS). Patients with detectable postoperative ctDNA experienced a significantly lower RFS (HR 6.3; 95% CI 2.58 to 15.2; P < 0.001) and overall survival (HR 4.2; 95% CI 1.5 to 11.8; P < 0.001) compared to patients with undetectable ctDNA. For the 11 patients with detectable postoperative ctDNA who had serial ctDNA sampling during adjuvant chemotherapy, ctDNA clearance was observed in 3 patients, 2 of whom remained disease-free. All 8 patients with persistently detectable ctDNA after adjuvant chemotherapy have recurred. End-of-treatment (surgery +/− adjuvant chemotherapy) ctDNA detection was associated with a 5-year RFS of 0% compared to 75.6% for patients with an undetectable end-of-treatment ctDNA (HR 14.9; 95% CI 4.94 to 44.7; P < 0.001). Key limitations of the study include the small sample size and the potential for false-positive findings with multiple hypothesis testing. Conclusions We confirmed the prognostic impact of postsurgery and posttreatment ctDNA in patients with resected CRLM. The potential utility of serial ctDNA analysis during adjuvant chemotherapy as an early marker of treatment efficacy was also demonstrated. Further studies are required to define how to optimally integrate ctDNA analyses into decision-making regarding the use and timing of adjuvant therapy for resectable CRLM. Trial registration ACTRN12612000345886.