Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Circulation Research, 10(128), p. 1435-1450, 2021

DOI: 10.1161/circresaha.121.318158

Links

Tools

Export citation

Search in Google Scholar

Mechanisms and Models in Heart Failure

Journal article published in 2021 by Douglas L. Mann ORCID, G. Michael Felker ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite multiple attempts to develop a unifying hypothesis that explains the pathophysiology of heart failure with a reduced ejection fraction (HFrEF), no single conceptual model has withstood the test of time. In the present review, we discuss how the results of recent successful phase III clinical development programs in HFrEF are built upon existing conceptual models for drug development. We will also discuss where recent successes in clinical trials do not fit existing models to identify areas where further refinement of current paradigms may be needed. To provide the necessary structure for this review, we will begin with a brief overview of the pathophysiology of HFrEF, followed by an overview of the current conceptual models for HFrEF, and end with an analysis of the scientific rationale and clinical development programs for 4 new therapeutic classes of drugs that have improved clinical outcomes in HFrEF. The 4 new therapeutic classes discussed are ARNIs, SGLT2 (sodium-glucose cotransporter 2) inhibitors, soluble guanylate cyclase stimulators, and myosin activators. With the exception of SGLT2 inhibitors, each of these therapeutic advances was informed by the insights provided by existing conceptual models of heart failure. Although the quest to determine the mechanism of action of SGLT2 inhibitors is ongoing, this therapeutic class of drugs may represent the most important advance in cardiovascular therapeutics of recent decades and may lead to rethinking or expanding our current conceptual models for HFrEF.