Published in

IOS Press, Journal of Alzheimer's Disease, 2(79), p. 483-491, 2021

DOI: 10.3233/jad-200734

Links

Tools

Export citation

Search in Google Scholar

Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of <192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated. Results: The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set. Conclusion: Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.