Published in

American Association for Cancer Research, Clinical Cancer Research, 14(27), p. 4012-4024, 2021

DOI: 10.1158/1078-0432.ccr-20-4781

Links

Tools

Export citation

Search in Google Scholar

Global Phosphoproteomics reveal CDK suppression as a vulnerability to KRAS addiction in Pancreatic Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. Experimental Design: Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. Results: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. Conclusions: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.