Published in

American Association for Cancer Research, Cancer Research, 13(81), p. 3568-3579, 2021

DOI: 10.1158/0008-5472.can-20-4125

Links

Tools

Export citation

Search in Google Scholar

TIMP1 Triggers Neutrophil Extracellular Trap Formation in Pancreatic Cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Tumor-derived protein tissue inhibitor of metalloproteinases-1 (TIMP1) correlates with poor prognosis in many cancers, including highly lethal pancreatic ductal adenocarcinoma (PDAC). The noncanonical signaling activity of TIMP1 is emerging as one basis for its contribution to cancer progression. However, TIMP1–triggered progression-related biological processes are largely unknown. Formation of neutrophil extracellular traps (NET) in the tumor microenvironment is known to drive progression of PDAC, but factors or molecular mechanisms initiating NET formation in PDAC remain elusive. In this study, gene-set enrichment analysis of a human PDAC proteome dataset revealed that TIMP1 protein expression most prominently correlates with neutrophil activation in patient-derived tumor tissues. TIMP1 directly triggered formation of NETs in primary human neutrophils, which was dependent on the interaction of TIMP1 with its receptor CD63 and subsequent ERK signaling. In genetically engineered PDAC-bearing mice, TIMP1 significantly contributed to NET formation in tumors, and abrogation of TIMP1 or NETs prolonged survival. In patient-derived PDAC tumors, NETs predominantly colocalized with areas of elevated TIMP1 expression. Furthermore, TIMP1 plasma levels correlated with DNA-bound myeloperoxidase, a NET marker, in the blood of patients with PDAC. A combination of plasma levels of TIMP1 and NETs with the clinically established marker CA19–9 allowed improved identification of prognostically distinct PDAC patient subgroups. These observations may have a broader impact, because elevated systemic levels of TIMP1 are associated with the progression of a wide range of neutrophil-involved inflammatory diseases. Significance: These findings highlight the prognostic relevance of TIMP1 and neutrophil extracellular traps in highly lethal pancreatic cancer, where a noncanonical TIMP1/CD63/ERK signaling axis induces NET formation.