Published in

American Association of Neurological Surgeons, Journal of Neurosurgery: Pediatrics, 1(28), p. 54-61, 2021

DOI: 10.3171/2020.11.peds20660

Links

Tools

Export citation

Search in Google Scholar

Responsive neurostimulation for the treatment of medically refractory epilepsy in pediatric patients: strategies, outcomes, and technical considerations

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE Children with medically refractory partial-onset epilepsy arising from eloquent cortex present a therapeutic challenge, as many are not suitable for resective surgery. For these patients, responsive neurostimulation may prove to be a potential tool. Although responsive neurostimulation has demonstrated utility in adults, little has been discussed regarding its utility in the pediatric population. In this study, the authors present their institution’s experience with responsive neurostimulation via the RNS System through a case series of 5 pediatric patients. METHODS A single-center retrospective study of patients who underwent RNS System implantation at Children’s National Hospital was performed. RESULTS Five patients underwent RNS System implantation. The mean patient age at treatment was 16.8 years, and the average follow-up was 11.2 months. All patients were considered responders, with a seizure frequency reduction of 64.2% without adverse events. CONCLUSIONS All 5 patients experienced medium-term improvements in seizure control after RNS System implantation with decreases in seizure frequency > 50% from baseline preoperative seizure frequency. The authors demonstrated two primary configurations of electrode placement: hippocampal or amygdala placement via an occipitotemporal trajectory, as well as infratemporal surface electrodes and surface electrodes on the primary motor cortex. No adverse events were experienced in this case series.