Published in

American Association for the Advancement of Science, Science, 6541(372), p. 516-520, 2021

DOI: 10.1126/science.abe6494

Links

Tools

Export citation

Search in Google Scholar

A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biosynthesis and replication, from A to Z Four nucleobases. adenine (A), cytosine (C), guanine (G), and thymine (T), are usually thought to be invariable in DNA. In bacterial viruses, however, each of the DNA bases have variations that help them to escape degradation by bacterial restriction enzymes. In the genome of cyanophage S-2L, A is completely replaced by diaminopurine (Z), which forms three hydrogen bonds with T and thus creates non–Watson-Crick base pairing in the DNA of this virus (see the Perspective by Grome and Isaacs). Zhou et al. and Sleiman et al. determined the biochemical pathway that produces Z, which revealed more Z genomes in viruses hosted in bacteria distributed widely in the environment and phylogeny. Pezo et al. identified a DNA polymerase that incorporates Z into DNA while rejecting A. These findings enrich our understanding of biodiversity and expand the genetic palette for synthetic biology. Science , this issue p. 512 , 516 , 520 ; see also p. 460