National Academy of Sciences, Proceedings of the National Academy of Sciences, 17(118), 2021
Full text: Download
Significance Movement is a key feature of the surveillance and protective roles of microglia. This dynamic process is highly modulated by the surrounding environment. We discovered that microglia movement is temperature dependent in vitro and in vivo. Our investigation of thermosensitive TRP channel involvement in this phenomenon revealed several candidates including TRPM2, TRPM4, and TRPV4 channels. Using pharmacological tools and transgenic mice, we showed that the temperature dependency of microglia movement mainly relies on TRPV4 channel activity. Understanding the mechanisms by which temperature modulates microglia movement will improve our comprehension of pathological processes and allow the identification of new leads for the treatment of brain pathologies.