Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-12763-9

Links

Tools

Export citation

Search in Google Scholar

Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3.

Journal article published in 2019 by Rahel T. Florian, Florian Kraft, Florian Rt, Elsa Leitão, Sabine Kaya, Stephan Klebe, Anne-Fleur van Rootselaar ORCID, Eloi Magnin, Julien Buratti, Theresa Kühnel, Janine Altmueller, Christopher Schröder, Anaide Lamiral, Sebastian Giesselmann, Boris Keren and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFamilial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.